Solve for 0<=θ<π, the equation sin3θ-(sqrt3)cosθ=0 (C2)

Rearrange the equation to give sin3θ=(sqrt3)cos3θ, then divide through by cos3θ to give sin3θ/cos3θ=sqrt3. We know from our trig identities that sinx/cosx=tanx, so our equation now becomes tan3θ=sqrt3. Use your calculator to find 3θ, I got 3θ=π/3, so θ=π/9 which is within our range for θ.

BH
Answered by Becky H. Maths tutor

8438 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express [1+4(square root)7] /[ 5+ 2(square root)7] in the form m + n (square root)7 , where m and n are integers.


Find dy/dx of y = a^x


Differentiating (x^2)(sinx) Using the Product Rule


How do I use numerical methods to find the root of the equation F(x) = 0?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences