How do you solve an equation by completing the square?

Firstly, you can only complete the square on quadratic functions (functions in the form Ax2+Bx+C)

If A=1,

Consider B, the coefficient of x. Substitute it into ( x + (B/2) )2

We know if we multiply this out, we will get x2+Bx+(B/2)2

However, we want x2+Bx+C. 

We therefore subtract the (B/2)2 we don't want and add the C we do. 

This gives us ( x + (B/2) )2 - (B/2)2 + C. 

This method is called 'completing the sqaure'

If A does not = 1, manipulate the quadratic so it is in the form A( x+ (B/A) x + (C/A))Solve the bracket as normal and multiply through by A at the end.

 

 

EJ
Answered by Emma J. Maths tutor

4757 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why do we need the constant of integration?


Use the addition formulas: sin(x+y)=sin(x)*cos(y)+sin(y)*cos(x), cos(x+y)=cos(x)*cos(y)-sin(x)*sin(y) to derive sin(2x), cos(2x), sin(x)+sin(y).


Why/How does differentiation work?


Solve the equation 2x^3 - 5x^2 - 4x + 3 = 0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences