Solve the equation " 2sec^2(x) = 5tanx " for 0 < x < π

Firstly, we must recognise that the equation contains two different trigonometric functions (sec() and tan()) and therefore we must rewrite one of these functions in terms of the other. Therefore we will need our trigonometric identity that contains both sec() and tan(): " sec^2(x) = tan^2(x) + 1 ". So by substituting this into our original equation gives us: " 2tan^2(x) + 2 = 5tan(x) " Now we can see that we have a quadratic equation in tan(x). To make this clearer I will say "Let tan(x) be represented by t", which gives: " 2t^2 - 5t + 2 = 0 " Now, like in GCSE we can factorise this equation to find its roots, like so: " (2t - 1)(t - 2) = 0 " which gives us our solution: " t = 1/2, t = 2 ". But we haven't finished yet as the question wants us to find values for x (in radians) which satisfy the equation given. To do this, we must replace t for tan(x). " tan(x) = 1/2, tan(x) = 2 " so our solution is: " x = arctan(1/2), x = arctan(2) " which approximately equals: " x = 0.464, x = 1.107 ".

JB
Answered by Joel B. Maths tutor

15393 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

2+2 is 4, minus 1, that's what?


A particle P is projected vertically upwards from a point 20m above the ground with velocity 18m/s, no external forces act on it other than gravity. What will its speed be right before it hits the ground? Give your answer to one decimal place.


differentiate the function (x^2 +5/x + 3) with respect to x


Find minimum and maximum of x^2+1 if they exist


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning