Find the roots of the equation y=x^2-8x+5 by completing the square.

Firstly, we need to look at completing the square. This is done by looking at the x^2-8x section of the equation. We need to find a way of converting it to the format of (x-a)^2. If you remember, when multiplying out brackets, the first x will be squared and the second x term will be ax2. Therefore, we find that (x-4)^2 will produce x^2-8x+16. This 16 didn't exist before so we must subtract this from our equation. We therefore produce: y=(x-4)^2+5-16 = (x-4)^2-11

We must then make y=0 as we are trying to find the roots - where the graph crosses the x axis.

a) 0=(x-4)^2-11 - add 11 to both sides. b) 11=(x-4)^2 - square root both sides not forgetting the plus or minus. c) +/-11^1/2 = x-4 - add 4 to both sides. d) x=4+11^1/2 or 4-11^1/2

You have now found the 2 roots of the equation.

Answered by Aaron G. Maths tutor

3951 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the Binomial Expansion of (1-5x)^4.


The complex conjugate of 2-3i is also a root of z^3+pz^2+qz-13p=0. Find a quadratic factor of z^3+pz^2+qz-13p=0 with real coefficients and thus find the real root of the equation.


A circle has eqn x^2 + y^2 + 2x - 6y - 40 = 0. Rewrite in the form (x-a)^2 + (y-b)^2 = d.


If f(x)=7xe^x, find f'(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences