Find the roots of the equation y=x^2-8x+5 by completing the square.

Firstly, we need to look at completing the square. This is done by looking at the x^2-8x section of the equation. We need to find a way of converting it to the format of (x-a)^2. If you remember, when multiplying out brackets, the first x will be squared and the second x term will be ax2. Therefore, we find that (x-4)^2 will produce x^2-8x+16. This 16 didn't exist before so we must subtract this from our equation. We therefore produce: y=(x-4)^2+5-16 = (x-4)^2-11

We must then make y=0 as we are trying to find the roots - where the graph crosses the x axis.

a) 0=(x-4)^2-11 - add 11 to both sides. b) 11=(x-4)^2 - square root both sides not forgetting the plus or minus. c) +/-11^1/2 = x-4 - add 4 to both sides. d) x=4+11^1/2 or 4-11^1/2

You have now found the 2 roots of the equation.

AG
Answered by Aaron G. Maths tutor

4664 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I go about drawing the graph of f(x) = sin(x)/(e^x) for -π≤x≤2π?


How do I do binomial expansions for positive integer n?


What is the indefinite integral of (x^4)*(-sin(x)) dx


A curve has parametric equations -> x = 2cos(2t), y = 6sin(t). Find the gradient of the curve at t = π/3.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning