Describe and explain the photoelectric effect (6 marks)

In the photoelectric effect, the electromagnetic wave is thought to exist as quanta (discrete packets) of energy, called photons. When an EM wave is directed at a metal surface, the photons are absorbed by the electrons, causing them to be emitted from the surface. This will only happen if the photon has greater energy than the work function energy of the metal. The kinetic energy of the electrons depends on the energy of the photon- the maximum KE of an electron emitted is equal to the energy of the photon minus the work function of the metal. The number of electrons emitted depends on light intensity, as a higher light intensity means more photons of light and therefore more electrons emitted.

MF
Answered by Maria F. Physics tutor

16625 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A ball is hit horizontally at a height of 1.2 m and travels a horizontal distance of 5.0 m before reaching the ground. The ball is at rest when hit. Calculate the initial horizontal velocity given to the ball when it was hit.


A Positron has the same mass, but opposite charge to an electron. A Positron and electron are orbiting around each other separated by 1μm, in a stable circular orbit about their centre of mass, as a result of electrostatic attraction. Calculate the period


A rock has a mass of 100g and it is thrown across a pond at a speed of 30ms^-1. Calculate the de Broglie wavelength of the rock and explain whether you can see the wave produced.


A particle that moves uniformly in a circular path is accelerating yet moving at a constant speed. Explain this statement.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning