Why can graphite conduct electricity but not diamond?

In graphite, each carbon atom is covalently bonded to three other carbon atoms. One of the four outer shell electrons of each carbon atom is therefore not engaged in bonding, and becomes delocalised. These delocalised electrons are free to move around the structure, carrying charge and allowing graphite to conduct electricity.

However, in diamond, each carbon atom is covalently bonded to four other carbon atoms. All four of the outer shell electrons in each carbon atom are engaged in bonding, leaving no delocalised electrons free to move around the structure and carry charge.

Answered by Tierney A. Chemistry tutor

77801 Views

See similar Chemistry GCSE tutors

Related Chemistry GCSE answers

All answers ▸

What does the periodic table show you?


How is crude oil separated?


a) Give a balanced equation for the complete combustion of butane, b) Explain how this would change if there was insufficient oxygen present, and explain the problems this causes


Why does the temperature decrease in the endothermic reaction?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences