If the equation of a curve is x^2 + 9x + 8 = y, then differentiate it.

First we must establish how to differentiate terms individually. This is done by using the simple method of multiplying the X by the power, and subtracting one away from the power. To make it easier we will differentiate each term individually and then put the equation back together at the end. 1. x^2 2x^(2-1) =2x 2. 9x 19x^(1-1) = 9x^0 =91 = 9 3. 8 08^(0-1) = 0 Therefore dy/dx = 2x+9 This would be useful if the gradient needed to be found. To find the gradient at a point all you need to do is substitute in the X value.

Related Further Mathematics GCSE answers

All answers ▸

Use differentiation to show the function f(x)=2x^3–12x^2+25x–11 is an increasing function for all values of x


The curve C is given by the equation x^4 + x^2y + y^2 = 13. Find the value of dy/dx at the point (-1,3). (A-level)


y = (x+4)(6x-7). By differentiating, find the x coordinate of the maximum of this equation.


Find the General Second Order Differential Equation Using Substitution (A2 Further Maths)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences