If y = 2(x^2+1)^3, what is dy/dx?

Since the equation for y is a composite function (applying one function to another function) we need to use the chain rule to answer this question. Firstly let u = x^2+1 . This allows us to write y = 2u^3. Differentiating y with respect to u gives us: dy/du = 6u^2. Next we differentiate our equation for u with respect to x, which gives us: du/dx = 2x Finally we use these two equations to obtain dy/dx by using the following formula: dy/dx = (dy/du)(du/dx) = (6u^2)(2x) = (6(x^2+1)^2)*(2x) = 12x(x^2+1)^2 Hence we have obtained dy/dx in terms of x and y.

Answered by Gemma C. Maths tutor

3594 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If y = exp(x^2), find dy/dx


Let f(x) = x^3 -2x^2-29x-42. a)Show (x+2) is a factor b)Factorise f(x) completely


Find the all the angles of a triangle with side lengths of 8cm, 11cm and 11cm.


What is the derivative of f(x)=sqrt(3x+2)=(3x+2)^(1/2)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences