If y = 2(x^2+1)^3, what is dy/dx?

Since the equation for y is a composite function (applying one function to another function) we need to use the chain rule to answer this question. Firstly let u = x^2+1 . This allows us to write y = 2u^3. Differentiating y with respect to u gives us: dy/du = 6u^2. Next we differentiate our equation for u with respect to x, which gives us: du/dx = 2x Finally we use these two equations to obtain dy/dx by using the following formula: dy/dx = (dy/du)(du/dx) = (6u^2)(2x) = (6(x^2+1)^2)*(2x) = 12x(x^2+1)^2 Hence we have obtained dy/dx in terms of x and y.

Answered by Gemma C. Maths tutor

3821 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx when y = (3x-1)^10


How do you differentiate 2 to the power x?


How do i remember the difference between differentiation and integration?


How do we know which formulas we need to learn for the exam?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences