If y = 2(x^2+1)^3, what is dy/dx?

Since the equation for y is a composite function (applying one function to another function) we need to use the chain rule to answer this question. Firstly let u = x^2+1 . This allows us to write y = 2u^3. Differentiating y with respect to u gives us: dy/du = 6u^2. Next we differentiate our equation for u with respect to x, which gives us: du/dx = 2x Finally we use these two equations to obtain dy/dx by using the following formula: dy/dx = (dy/du)(du/dx) = (6u^2)(2x) = (6(x^2+1)^2)*(2x) = 12x(x^2+1)^2 Hence we have obtained dy/dx in terms of x and y.

Answered by Gemma C. Maths tutor

3648 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I identify that the coordinate (2,3) is the maximum point of the curve f(x)?


Binomially expand the equation (2+kx)^-3


What is the point of a derivative?


The mass of a substance is increasing exponentially. Initially its mass is 37.5g, 5 months later its mass is 52g. What is its mass 9 months after the initial value to 2 d.p?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences