Solve the following simultaneous equations: 2a-5b=11, 3a+2b=7

Let 2a-5b=11 be Equation 1 and 3a+2b=7 be Equation 2. To find a and b, we first need to eliminate one of these variables from the equation. Firstly we can eliminate a from both equations to find b. To do this, we can multiply Equation 1 by 3 and Equation 2 by 2. This gives us: 6a-15b=33, 6a+4b=14. If we take away Equation 1 from Equation 2, we are left with: -15b-4b=33-14. Solving this gives: -19b=19, b=-1. Now that we have obtained b, we can substitute this value back into one of our original equations to obtain a: 2a-5b=11, 2a+5=11, 2a=6, a=3. Hence a=3, b=-1. Note:You can also solve these equations by elimination b first rather than a, you will still obtain the same answer.

GC
Answered by Gemma C. Maths tutor

15611 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How to solve the following for x: (2x+3)/(x-4) - (2x-8)(2x+1) = 1


3x + 2y = 6, 5x+3y=11, solve for x and y.


In 2017 the number of teachers in a school was 20. The number of teachers doubles each year. If in 2019 3/5 of the teachers are female how many male teachers are there in 2019?


Prove that the square of an odd number is always 1 more than a multiple of 4.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning