Differentiate e^(xsinx)

Here you need to use the formula that the differential of e^f(x), where f(x) is any function, is equal to f'(x)e^f(x). So for our function we differentiate xsinx using product rule to give sinx + xcosx. By using the formula above we can show that the answer is (sinx + xcosx)e^(xsinx).

Answered by Samuel L. Maths tutor

8338 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = 4sin(x)cos(3x) . Evaluate dy/dx at the point x = pi.


Solve the pair of simultaneous equations; (1) y + 4x + 1 = 0, (2) y^2 + 5x^2 + 2x = 0 .


Solve the simultaneous equations: x+y =2; x^2 + 2y = 12


Whats the Product rule for differentiation and how does it work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences