Differentiate e^(xsinx)

Here you need to use the formula that the differential of e^f(x), where f(x) is any function, is equal to f'(x)e^f(x). So for our function we differentiate xsinx using product rule to give sinx + xcosx. By using the formula above we can show that the answer is (sinx + xcosx)e^(xsinx).

SL
Answered by Samuel L. Maths tutor

9022 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the identity cos(A+B)= cosAcosB-sinAsinB, prove that cos2A=1-2sin^2A.


How to integrate 5x^2?


When trying to solve inequalities (e.g. 1/(x+2)>x/(x-3)) I keep getting the wrong solutions even though my algebra is correct.


The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 + 2x + 3. Given that (x-3) is a factor of f(x), express f(x) in factorised form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning