A curve has the equation y=12+3x^4. Find dy/dx.

Bring the power down and multiply it to the value directly before x, and then remove 1 from the power after this. So in this instance 12 has no x or power with it, therefore it disappears because you multiple it by 0. and the 3 is now multiplied by 4 to leave y=12x^3.

Answered by Bradley P. Maths tutor

3377 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the integral of 2x^5 - 1/4x^3 - 5


A curve is defined by parametric equations: x = t^(2) + 2, and y = t(4-t^(2)). Find dy/dx in terms of t, hence, define the gradient of the curve at the point where t = 2.


Find the area bounded by the curve y=(sin(x))^2 and the x-axis, between the points x=0 and x=pi/2


Core 1: Given that y = x^4 + x^2+3. Find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences