When would you apply the product rule in differentiation and how do you do this?

The product rule is used to differentiate a function when it is in the form y= u(x)v(x). To use the rule you differentiate u(x) and multiply that by v(x), and then add that to the differential of v(x) multiplied by u(x). This gives you the differential of y in the form dy/dx= vdu/dx + u*dv/dx.

Answered by Robin S. Maths tutor

3435 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The point on the circle x^2+y^2+6x+8y = 75 which is closest to the origin, is at what distance from the origin? (Taken from an MAT paper)


How do you integrate (2x)/(1+x^2) with respect to x?


Use implicit differentiation to find dy/dx of a curve with equation x^3 + yx^2 = y^2 + 1.


Find the exact solution of the equation in its simplest form: 3^x * e^4x = e^7.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences