Solve the simultaneous equations 2a + b =4 and 5a – 3b = -1

When you solve normal equations like 4x-2=7, there is one equation and one unknown value. This case is no different: in order to solve these equations, you need to create one equation with one unknown. We start by labelling the equations 1 and 2. This method is called the substitution method. First we have to rewrite one of the equations, isolating one of the variables on one side. In this example, this is easiest with equation 1 (2a + b =4 --> b = 4 - 2a). We now have an expression for b, which we can substitute into equation 2. This gives 5a - 3(4 - 2a) = -1. We can then solve this new equation to give us 11a = 11, a = 1. We can then use a = 1 to find b, by substituting this value into one of the original equations. Using equation 1, we get 2(1) + b = 4, so b = 2, and a = 1.

Answered by Molly M. Maths tutor

13518 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 10 beads in a bag. Four beads are green, six are black. If three beads are taken at random without replacement, what is the probability that they are the same colour?


Solve 10(x + 2) – (2x – 9) = 30


How would you find the mean for the numbers 100, 230, 450, 120 and 250?


Solve the simultaneous equations: 5x + 3y = 9 and 7x - 2y = 25.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences