Is a line ax+by+c=0 tangent to a circle?

Get a line a form y=-ax/b-c/b, then substitute into a cirle equation (x-p)^2 +(y-s)^2=r^2. Get a quadratic and find whether a discriminant is equal to zero. If it is then the line is tangent to a circle. Otherwise, for d>0 the line cuts through two points on a circle, for d<0 the line has no common points with a circle.

Answered by Jakub O. Maths tutor

7560 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact value of x from the equation 3^x * e^4x = e^7


how do I differentiate?


The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 +2x+3. Express f(x) in a fully factorised form.


Using the substitution x = 2cosu, find the integral of dx/((x^2)(4-x^2)^1/2), evaluated between x=1 and x=sqrt(2).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences