Is a line ax+by+c=0 tangent to a circle?

Get a line a form y=-ax/b-c/b, then substitute into a cirle equation (x-p)^2 +(y-s)^2=r^2. Get a quadratic and find whether a discriminant is equal to zero. If it is then the line is tangent to a circle. Otherwise, for d>0 the line cuts through two points on a circle, for d<0 the line has no common points with a circle.

JO
Answered by Jakub O. Maths tutor

9061 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I sketch the graph y = (x^2 + 4*x + 2)/(3*x + 1)


Integrate the following equation to find y: dy/dx = 3x^2 + 2x + 6


Complete the indefinite integral : ∫x lnx dx


Prove the change of base formula for logarithms. That is, prove that log_a (x) = log_b (x) / log_b (a).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning