Is a line ax+by+c=0 tangent to a circle?

Get a line a form y=-ax/b-c/b, then substitute into a cirle equation (x-p)^2 +(y-s)^2=r^2. Get a quadratic and find whether a discriminant is equal to zero. If it is then the line is tangent to a circle. Otherwise, for d>0 the line cuts through two points on a circle, for d<0 the line has no common points with a circle.

Answered by Jakub O. Maths tutor

6872 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The Curve C has equation y = 3x^4 - 8x^3 - 3. Find dy/dx.


What is 'differentiation'?


Find the x and y coordinates of the turning points of the curve 'y = x^3 - 3x^2 +4'. Identify each turning point as either a maximum or a minimum.


A curve C has the equation x^3 + 6xy + y^2 = 0. Find dy/dx in terms of x and y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences