Solve equation 1/x + x^3 + 5x=0

For x!=0, multiply the equation by x to get x^4+5x^2+1=0. Then substitute t=x^2 where t>=0. So the equation has a form t^2+5t+1. Then find the discriminant and two roots. One of the roots t2<0 doesn't meet the condition for t>=0 so we take t1=x^2, then we find two x roots, and have a final solution.

Answered by Jakub O. Maths tutor

3692 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How come x^2 = 25 has 2 solutions but x=root(25) only has one? Aren't they the same thing?


A curve has the equation y=12+3x^4. Find dy/dx.


∫ (ln(x)/(x*(1+ln(x))^2) dx


C and D are two events such that P(C) = 0.2, P(D) = 0.6 and P(C|D) = 0.3. Find P(D|C), P(C’ ∩ D’) & P(C’ ∩ D)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences