Solve the two simultaneous equations: 2y + x = 8 [A] and 1 + y = 2x [B]

I have labelled the two separate equations A and B so that it is easier to talk about them. There are two ways in which you can do these equations but I am going to explain the method using substitution. As y and x are in both of the equations we can try to eliminate at least one of these unknowns for the moment. So, if we rearrange [B] so that y=2x-1 we can then substitute this value of y into [A]. This will give us: 2(2x-1) + x =8. By multiplying this out we get: 4x-2+x=8 By grouping the x values together: 5x-2=8 Then placing all the unknowns to one side of the equation 5x=10 and then dividing both sides by 5 we get: x=2. So we have found the value for x! We would then substitute this into [B]: 1+y=2(2),then multiplying this out 1+y=4, placing all the unknowns onto one side: y=3 So we have a solution for y! Just to check that our answers are correct we can substitute our two values into [A]: 2(3)+(2)=6+2 =8 and 8 is the correct answer so we know our solutions are correct!

Answered by Ciara D. Maths tutor

6572 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What does it mean to solve an equation for x?


Factorise x^2 −x−12


The line l is a tangent to the circle x^2 + y^2 = 40 at the point A. A is the point (2,6). The line l crosses the x-axis at the point P. Work out the area of the triangle OAP.


There is a right angled triangle with sides of 5cm, 12cm and 13cm. What is the size of the smallest angle?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences