How do I differentiate a quadratic to the power n?

To do this we will use the chain rule, whereby dy/dx = dy/du * du/dx. So if y = (ax^2+bx+c)^n then we will say that u = ax^2+bx+c. Therefore y =u^n. So to find dy/dx we differentiate u with respect to x, which = 2ax +b, and multiply this by the differential of y =u^n, which is nu^(n-1). Therefore dy/dx = nu^(n-1) * (2ax+b) Subbing the original equation in for u leads to dy/dx = n(2ax+b)(ax^2+bx+c)^(n-1)

AA
Answered by Alex A. Maths tutor

5033 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A line has an equation y = e^(2x) - 10e^(x) +12x, find dy/dx


Use the addition formulas: sin(x+y)=sin(x)*cos(y)+sin(y)*cos(x), cos(x+y)=cos(x)*cos(y)-sin(x)*sin(y) to derive sin(2x), cos(2x), sin(x)+sin(y).


A curve has equation y = x^3 - 3x^2 -24x + 5, find the x co-ordinates of the two stationary points of the curve and hence determine whether they are maximum or minimum points.


Solve 5x/(2x+1) - 3/(x+1) = 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences