How do I differentiate a quadratic to the power n?

To do this we will use the chain rule, whereby dy/dx = dy/du * du/dx. So if y = (ax^2+bx+c)^n then we will say that u = ax^2+bx+c. Therefore y =u^n. So to find dy/dx we differentiate u with respect to x, which = 2ax +b, and multiply this by the differential of y =u^n, which is nu^(n-1). Therefore dy/dx = nu^(n-1) * (2ax+b) Subbing the original equation in for u leads to dy/dx = n(2ax+b)(ax^2+bx+c)^(n-1)

Answered by Alex A. Maths tutor

4993 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate 5x


Using substitution, integrate x(2 + x))^1/2 where u^2 = 2 + x


Find the derivative of sin^2(x)


Find ∫ ( 2x^4 - 4x^(-0.5) + 3 ) dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences