How do I differentiate a quadratic to the power n?

To do this we will use the chain rule, whereby dy/dx = dy/du * du/dx. So if y = (ax^2+bx+c)^n then we will say that u = ax^2+bx+c. Therefore y =u^n. So to find dy/dx we differentiate u with respect to x, which = 2ax +b, and multiply this by the differential of y =u^n, which is nu^(n-1). Therefore dy/dx = nu^(n-1) * (2ax+b) Subbing the original equation in for u leads to dy/dx = n(2ax+b)(ax^2+bx+c)^(n-1)

Answered by Alex A. Maths tutor

4918 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

show that f(x)=cos(x) is even and what is its graphical property


A block of mass 5 kg is being pushed over level ground by rod at 60 degrees to horizontal with force 40 N with acc. 1.5 what is the frictional force of the surface and draw a diagram with the forces acting on the block


Show that 2sin(2x)-3cos(2x)-3sin(x)+3=sin(x)(4cos(x)+6sin(x)-3)


Integrate cos^2x + cosx + sin^2x + 3 with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences