The equation of a curve is x(y^2)=x^2 +1 . Using the differential, find the coordinates of the stationary point of the curve.

Firstly we need to use product rule to find the dy/dx of the left hand side (LHS). Using implicit differentiation, we know the differential of y^2 is 2y(dy/dx). Then use to product rule to obtain the dy/dy of LHS to be 2xy(dy/dx). The right hand side, we can treat as a normal differential therefore it is 2x. We can then rearrange the equation so that (dy/dx) is the subject. Now, we need to find the stationary point and to do that, we must set the differential equal to zero and rearrange to get either x or y on its own. I suggest trying to isolate y since it makes the next part a little easier. After rearranging, you should get y=root2x so then we can substitute root2x into the original equation to get the x coordinate. This is 1. To obtain the y coordinate, simply sub 1 into our equation for y and we get +/- root2.

GC
Answered by Grace C. Maths tutor

6392 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

2^-8 = ?


How do I solve quadratic equation by completing the square : X^2 - 4X = 5


A curve has equation y = x^3 - 3x^2 -24x + 5, find the x co-ordinates of the two stationary points of the curve and hence determine whether they are maximum or minimum points.


What is differentation and how does it work?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning