The equation of a curve is x(y^2)=x^2 +1 . Using the differential, find the coordinates of the stationary point of the curve.

Firstly we need to use product rule to find the dy/dx of the left hand side (LHS). Using implicit differentiation, we know the differential of y^2 is 2y(dy/dx). Then use to product rule to obtain the dy/dy of LHS to be 2xy(dy/dx). The right hand side, we can treat as a normal differential therefore it is 2x. We can then rearrange the equation so that (dy/dx) is the subject. Now, we need to find the stationary point and to do that, we must set the differential equal to zero and rearrange to get either x or y on its own. I suggest trying to isolate y since it makes the next part a little easier. After rearranging, you should get y=root2x so then we can substitute root2x into the original equation to get the x coordinate. This is 1. To obtain the y coordinate, simply sub 1 into our equation for y and we get +/- root2.

Answered by Grace C. Maths tutor

5700 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify (􏰀36x^−2)􏰁^ 0.5


A block mass m lies on an incline rough plane, with coefficient of friction µ. The angle of the block is increased slowly, calculate the maximum angle of the slope that can be achieved without the block slipping.


Differentiate the function y = 26 + x - 4x³ -½x^(-4)


The equation kx^2 + 4x + (5 – k) = 0, where k is a constant, has 2 different real solutions for x. Show that k satisfies k^2-5k+4>0.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences