How do you differentiate (2x+xe^6x)/(9x-(2x^2)-ln(x)) w.r.t. x?

This problem requires using the quotient rule, product rule and the chain rule. The derivative of the entire thing is ((du/dx)v-(dv/dx)u)/v^2 where u=2x+xe^6x and v=9x-2x^2-lnx. dv/dx is relatively straitforward: 9-4x-(1/x). 2x+xe^6x is less so, because this requires differentiating xe^6x. First notice this is two functions of x times each other, so we can use the product rule: so d/dx(xe^6x)=x(d/dx(e^6x))+e^6x. What is d/dx(e^6x)? We have to use the chain rule here: suppose g=6x, hence d/dg(e^g)xdg/dx=d(e^6x)=6e^6x. So now combining this altogether we know the derivative of the entire thing: ((2+e^6x+xe^6x)(9x-2x^2-lnx)-(2x+xe^6x)(9-4x-1/x))/(9x-2x^2-lnx)^2

Answered by Seth H. Maths tutor

2955 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate cos^2(2x)sin^3(2x) dx


Rewrite ... logF=logG+logH−log(1/M)−2*logR ... in the form F=... using laws of logarithms


Differentiate with respect to x: y=(6x^2-1)/2sqrt(x)


A curve is described by f(x) = x^2 + 2x. A second curve is described by g(x) = x^2 -5x + 7. Find the point (s) where both curves intersect.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences