Edexcel C3 June 2015 Q1: tan(x)=p, where p is a constant. Using standard trigonometric identities, find the following in terms of p. a) tan(2x). b) cos(x). c) cot(x-45).

a) tan(A+B)=(tanA+tanB)/(1-tanAtanB) So, tan(2x)=[tan(x)+tan(x)]/[1-(tanx)(tanx)]. Therefore, tan(2x)=[2tan(x)]/[1-tan^2(x)] = 2p/(1-p^2). b) cos(x)=1/sec(x). Using other trigonometric identities, we know that sec^2(x)=1+tan^2(x). Hence, cos(x)=1/sqrt[1+tan^2(x)] = 1/sqrt(1+p^2). c) cot(x-45)=1/tan(x-45). tan(x-45)=[tan(x)-tan(45)]/[1+tan(x)tan(45)] tan(x-45)=[tan(x)-1]/[1+tan(x)] Therefore, cot(x-45)=[1+tan(x)]/[tan(x)-1]=(1+p)/(p-1)

Answered by Liam R. Maths tutor

14358 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the derivative of two functions multiplied by each other?


Use the substitution u=1+e^x to find the Integral of e^(3x) / (1 + e^x)


A curve has equation -2x^3 - x^2 + 20x . The curve has a stationary point at the point M where x = −2. Find the x-coordinate of the other stationary point of the curve.


What is a good method to go about sketching a polynomial?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences