Edexcel C3 June 2015 Q1: tan(x)=p, where p is a constant. Using standard trigonometric identities, find the following in terms of p. a) tan(2x). b) cos(x). c) cot(x-45).

a) tan(A+B)=(tanA+tanB)/(1-tanAtanB) So, tan(2x)=[tan(x)+tan(x)]/[1-(tanx)(tanx)]. Therefore, tan(2x)=[2tan(x)]/[1-tan^2(x)] = 2p/(1-p^2). b) cos(x)=1/sec(x). Using other trigonometric identities, we know that sec^2(x)=1+tan^2(x). Hence, cos(x)=1/sqrt[1+tan^2(x)] = 1/sqrt(1+p^2). c) cot(x-45)=1/tan(x-45). tan(x-45)=[tan(x)-tan(45)]/[1+tan(x)tan(45)] tan(x-45)=[tan(x)-1]/[1+tan(x)] Therefore, cot(x-45)=[1+tan(x)]/[tan(x)-1]=(1+p)/(p-1)

Answered by Liam R. Maths tutor

14583 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

factorise x^3 + 3x^2 - 13x - 15


Express 4sinx + 3cosx in the form Rcos(x-a)


Given y = ln((2x+3)/(7x^3 +1)). Find dy/dx


find the integral of ((3x-2)/(6x^2-8x+3)) with respect to x between x=2 and x=1. (hint use substitution u=denominator)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences