The point P lies on the curve C: y=f(x) where f(x)=x^3-2x^2+6x-12 and has x coordinate 1. Find the equation of the line normal to C which passes through P.

First we must find the y coordinate of the point P: We know the x-coordinate is x1=1 so the y coordinate must satisfy the equation y1=f(1) which gives y1=-7. So we now know P is at (1,-7).

We now need to find the gradient of C at P, we will call this a. We know a=f'(1)=5.

So the gradient, m, of the normal line at P will be: m=-1/a=-1/5.

So we know our normal line must have gradient m=-1/5 and must pass through P at (x1,y1)=(1,-7). Using the equation of straigt line y-y1=m(x-x1) gives our answer 5y+x+34=0.

KH
Answered by Kieran H. Maths tutor

10043 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Sketch the graph y=-x^3, using this sketch y=-x^(1/3)


Differentiate with respect to x and write in its simpliest form, Y=(2x-3)/x^2?


A Polynomial is defined as X^3-6X^2+11X-6. a)i Use the factor theorem to show that X-3 is a factor. ii Express as a linear and quadratic b)Find the first and second derivative c) Prove there is a maximum at y=0.385 to 3DP


Can I take a derivative at x=0 for the function f(x) = |x| ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences