Solve the following simultaneous equations: 2x - y = 7 and x^2 + y^2 = 34

First, clearly write the two equations above one another, and label them (1) and (2). Rearrange the linear equation (the one with no squared variables) to make y the subject of the equation. You should get y = 2x - 7. Substitute this value of y into the other equation. Remember that you must squared the whole expression of y that you have substituted. You should get x^2 + (2x-7)^2 = 34. Expand all the brackets and group all like terms. By this point you should only have x's left. Since we have some x^2 and some only x, look to form a quadratic equation: 5x^2 - 28x +15 = 0. You can now use the quadratic formula to find x. Use your values of x in one of your original simultaneous equations to find two values of y.

Answered by Tobias F. Maths tutor

18324 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the linear equation 4x+5=-6x+15


If (2x+3)/(x-4)-(2x-8)/(2x+1)=1, what is x?


A pizza has a radius of 12cm. Calculate the area of the pizza in cm² , giving your answer as a multiple of π.


Alice will play 2 games of tennis against Bob. Alice’s chances of winning each game is 0.7. Work out the probability of Alice winning exactly one match.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences