Differentiate y= exp(cos^2(x)+sin^2(x)) by using the chain rule.

First of all instead ,we'll define the chain rule , thus y can be rewritten as y = f (g(x)) , where f(x) = exp (x) and g(x) = cos^2(x) + sin^2(x). Therefore let y = f(u) , dy/dx = dy/du * du/dx , which then gives us dy/dx = exp(cos^2(x)+sin^2(x))du/dx. To find du/dx , we'll use the product rule on both cos^2(x) and sin^2(x) , where g(x)=z(x)h(x) therefore dg/dx = dz/dxh+z*dh/dx. The value of du/dx = 0 , therefore dy/dx =0 . We can check the result if we were to use trigonometric identities , we would find that cos^2(x)+sin^2(x) = 1 , therefore y = exp(1) and dy/dx = 0 .

AJ
Answered by Ayman J. Maths tutor

4079 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For a graph C with equation y=3/(5-3x)^2, find the the equation of the line normal to the graph at point P, where x=2. Give your answer in the form ax+by+c=0


Can you show me why the integral of 1/x is the natural log of x?


When dealing with trigonometric functions such as sin, cos or tan, how do you solve the trigonometric equation when the argument of the function(s) is nx, where n is a real number not equal to 1.


Find the derivative of f(x)=x^2log(2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning