Solve the quadratic equation x^2+5x+6=0

There are two approaches which can be taken when solving this equation. The first is using the quadratic equation. By comparing the coefficients of the example to the general quadratic equation, a(x^2)+b(x)+c=0, we can set a=1, b=5 and c=6. We will now use the quadratic formula,x=(-b±√(b^2-4ac))/2a, and the values of a, b and c. Therefore, x==(-5±√(5^2-4x1x6))/2x1 We get that x=3 or x=2. The second approach is to use trial and error to find a pair of numbers which sum to 5 and whose product is 6, let us call these numbers d and e. Therefore, we need to find d and e such that b=d+e=5 and c=de=6. If these are satisfied, x=d or x=e. After trialling the possible pairs, 3 and 2 are a suitable pair, hence x=3 or x=2.

Answered by Anna M. Maths tutor

25355 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How to solve Simultaneous Linear Equations, e.g. (4x + 5y = 17) and (3x + 2y = 4)


To make 12 cakes you need 100g of butter, 6 eggs, and 40g of sugar. How many cakes can you make with 450g of butter, 15 eggs, and 110g of sugar?


Solve the next innequation: 12x-4>4x+12


In a right-angled triangle calculate the length of the hypotenuse when the side lengths at 5cm and 7cm. Leave your answer as a surd.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences