How do you solve the following simultaneous equations? 4x-3y=18, 7x+5y=52

First, we need to try and eliminate one of the x or the y variables from both equations. Here, we are going to eliminate the y variable. In order to do this, we need to make the y coefficients equal in both equations, and we can do this by multiplying the first equation through by 5 and the second one through by 3, so that both y variables are equal to 15. We get:

20x-15y=90 21x+15y=156

If we add the two equations together, we will eliminate the y variable, as required, because -15+15=0. Hence, we are left with one equation in terms of x:

41x=246, so x=6.

We can substitute this result into the first equation to get: 120-15y=90, and we can solve this to get y=2.

Hence, the solution to the simultaneous equations is x=6 and y=2.

Answered by Alma O. Maths tutor

4036 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is algebra?


Express x^2+8x+15 in the form (x+a)^2-b


work out 3 1/2 - 2 1/3. Give answer as an improper fraction


A pen is the shape of an equilateral triangle. A goat is attached to a corner of the pen on a rope. The goat eats all the grass it can reach. It can just reach the opposite fence of the pen. What percentage of the grass in the pen does the goat eat?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences