What is the derivative of y=(e^(2x))(sin(3x))

This question is slightly complex and requires you to use multiple differentiation rules. Since we are differentiating a product of two functions, the first rule that we have to use is the product rule: multiply the derivative of the first function (e^(2x)) by the second function, then add the derivative of the second function (sin(3x)) times the first function.

e^(2x) is in the form of a function within a function. The derivative of e^(2x) is found by using the chain rule: multiply the derivative of the function g(x)=2x by the derivative of e^g(x). This gives us 2e^(2x). Similarly, sin(3x) is also a function within a function and we must use the chain rule again, and multiply the derivative of the function h(x)=3x by the derivative of sin(h(x)), which gives us 3cos(3x).

After some simple rearranging of terms, we result in the answer to our question. dy/dx=e^(2x)(2sin(3x) + 3cos(3x))

Answered by Sajidah H. Maths tutor

10676 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate and find the stationary point of the equation y = 7x^2 - 2x - 1.


What's the gradient of the curve y=x^3+2x^2 at the point where x=2?


Find ∫(8x^3+6x^(1/2)-5)dx Give your answer in the simplest form.


Integrate sin^2(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences