Using the information given, we can draw a diagram of the ladder leaning against the wall. As the wall is at 90 degrees to the ground, we can see that the ladder, wall and ground form a right-angled triangle. The ladder is opposite the right angle and is therefore the hypotenuse of the triangle. Pythagoras' theorem states that a²+b²=c², where a, b and c are the lengths of the sides (with c being the hypotenuse). In this case, we know that a=0.8 (the distance between the wall and the bottom of the ladder) and c=6.2 (the length of the ladder), so we are looking for length b (how far the ladder reaches up the wall). By inputting these numbers into Pythagoras, we get: 0.8²+b²=6.2² By rearranging the equation, we get: b²=6.2²-0.8² b=√(6.2²-0.8²) Using a calculator, we can find out that b=6.14817046. The question asks for our answer to two decimal points, so our final answer is 6.15m.