Show that the radius of an orbit may be expressed as follows: R^3=((GM)/4*pi^2)T^2

Start with Newton's Law of Gravitation: F=(GMm)/R^2 (1) Since orbits are assumed to be circular recall the equation for centripetal force: F=(mv^2)/R (2) We can now equate these 2 forces due to them being action-reaction pairs (Newton's 3rd Law) (GMm)/R^2= (mv^2)/R We notice that small m on both sides cancel and 1/R^2 may be reduced to 1/R on the LHS giving an equation for v^2: v^2=GM/R (3) Since we have a circular orbit we can use the radial velocity equation: v=Rw (4) We then sub (4) into (3) R^2w^2=GM/R (5) Remember w=2pi/T (6) this can be substituted in and the R terms may be collected to give R^3 (4pi^2/T^2)R^3=GM (7) Finally divide by 4pi^2/T^2 to give the correct equation R^3=((GM)/4*pi^2)T^2 (8)

Answered by Liam M. Physics tutor

5036 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Outline the principal features of a geostationary orbit and use them to explain one use of satellites in this type of orbit.


What is natural frequency and how is it associated with resonance?


What are the main differences between magnetic and electric fields?


A car undergoes uniform acceleration from a starting velocity of 10ms^-1 to 20ms^-1 in 10s. Assuming the car's mass is 2000kg, calculate the net force in the direction of the acceleration.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences