Show that the radius of an orbit may be expressed as follows: R^3=((GM)/4*pi^2)T^2

Start with Newton's Law of Gravitation: F=(GMm)/R^2 (1) Since orbits are assumed to be circular recall the equation for centripetal force: F=(mv^2)/R (2) We can now equate these 2 forces due to them being action-reaction pairs (Newton's 3rd Law) (GMm)/R^2= (mv^2)/R We notice that small m on both sides cancel and 1/R^2 may be reduced to 1/R on the LHS giving an equation for v^2: v^2=GM/R (3) Since we have a circular orbit we can use the radial velocity equation: v=Rw (4) We then sub (4) into (3) R^2w^2=GM/R (5) Remember w=2pi/T (6) this can be substituted in and the R terms may be collected to give R^3 (4pi^2/T^2)R^3=GM (7) Finally divide by 4pi^2/T^2 to give the correct equation R^3=((GM)/4*pi^2)T^2 (8)

Answered by Liam M. Physics tutor

4796 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

The mercury atoms in a fluorescent tube are excited and then emit photons in the ultraviolet region of the elecrtomagnetic spectrum. Explain how the mercury atoms become excited.


A linear accelerator (LINAC) is used to accelerate protons at CERN before they are injected into the Large Hadron Collider. Explain with the aid of a diagram how the proton is accelerated by the LINAC.


What is the difference between internal energy, temperature, and heat?


Why does water stay in the bucket if it is swung through a loop fast enough?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences