Show that the radius of an orbit may be expressed as follows: R^3=((GM)/4*pi^2)T^2

Start with Newton's Law of Gravitation: F=(GMm)/R^2 (1) Since orbits are assumed to be circular recall the equation for centripetal force: F=(mv^2)/R (2) We can now equate these 2 forces due to them being action-reaction pairs (Newton's 3rd Law) (GMm)/R^2= (mv^2)/R We notice that small m on both sides cancel and 1/R^2 may be reduced to 1/R on the LHS giving an equation for v^2: v^2=GM/R (3) Since we have a circular orbit we can use the radial velocity equation: v=Rw (4) We then sub (4) into (3) R^2w^2=GM/R (5) Remember w=2pi/T (6) this can be substituted in and the R terms may be collected to give R^3 (4pi^2/T^2)R^3=GM (7) Finally divide by 4pi^2/T^2 to give the correct equation R^3=((GM)/4*pi^2)T^2 (8)

LM
Answered by Liam M. Physics tutor

5962 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How, given the threshold frequency and the kinectic enery of a photon, do you determine the frequency of the phton?


A spacecraft called Deep Space 1, mass 486 kg, uses an “ion-drive” engine which expels 0.13 kg of xenon propellant each day at 30kms^-1. What is the initial increase in speed of the spacecraft


How do you work out the work out the current through resistors in parallel?


The electric potential energy of two protons is 1.0MeV. Calculate their separation


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning