Show that the radius of an orbit may be expressed as follows: R^3=((GM)/4*pi^2)T^2

Start with Newton's Law of Gravitation: F=(GMm)/R^2 (1) Since orbits are assumed to be circular recall the equation for centripetal force: F=(mv^2)/R (2) We can now equate these 2 forces due to them being action-reaction pairs (Newton's 3rd Law) (GMm)/R^2= (mv^2)/R We notice that small m on both sides cancel and 1/R^2 may be reduced to 1/R on the LHS giving an equation for v^2: v^2=GM/R (3) Since we have a circular orbit we can use the radial velocity equation: v=Rw (4) We then sub (4) into (3) R^2w^2=GM/R (5) Remember w=2pi/T (6) this can be substituted in and the R terms may be collected to give R^3 (4pi^2/T^2)R^3=GM (7) Finally divide by 4pi^2/T^2 to give the correct equation R^3=((GM)/4*pi^2)T^2 (8)

Answered by Liam M. Physics tutor

4574 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A ball of mass 0.7 kg strikes the wall at an angle of 90 degrees with speed 72 km/h. Consider that the bounce lasts for 0.1 s and is perfectly elastic. What is the magnitude of the average reaction force from the wall that acts on the ball?


Assuming the Earth is a perfect sphere of radius R. By how much would your mass (m), as given by a scale, change if you measured it on the north pole and on the equator?


How does the strong nuclear force between two nucleons varies with separation of the nucleons. Please detail the range over which the force acts.


Bismuth-208, which has an atomic mass of 208u and 83 protons in the nucleus, decays through the emission of 2 alpha particles and a beta-positive particle. What isotope results from this decay?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences