What is the amplitude and period of y=3sin(5x)?

Amplitude of a periodic function is the maximum height it reaches above the centre line (or the lowest). This expressed in the equation as '3'. If the 3 was not there, then the sin wave would have an amplitude of 1, however the 3 multiplies the height.

The period is the distance for the periodic function to return to its original position. For example, peak to peak. For a standard sin wave, the period is 2(pi). In this function, the '5' is making the period shorter. Therefore, the period would be 2(pi)/5.

MR
Answered by Madeleine R. Maths tutor

6055 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Write down three linear factors of f(x) such that the curve of f(x) crosses the x axis at x=0.5,3,4. Hence find the equation of the curve in the form y = 2(x^3) + a(x^2) + bx + c.


f(x)= 2x^3 -7x^2 + 2x +3. Given that (x-3) is a factor of f(x), express f(x) in a fully factorised form.


How do you integrate ln(x)?


What does differentiating do?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences