Integrate ∫x^4+5x^3+sin(2x) dx

∫x^4+5x^3+sin(2x) dx So a basic rule for x functions is that 1. Add 1 to the power 2. divide by the new power. So lets do this for the 2 x terms 1/5x^5+5/4x^4 Now lets look at the sin(2x). A general rule for ∫sin(ax)dx= -1/a(cos(ax)). So now we look at our specific example and we find that ∫sin(2x)dx=-1/2(cos(2x)) So let's put it all together now and remember to add the constant of integration. ∫x^4+5x^3+sin(2x) dx= 1/5x^5+5/4x^4-1/2(cos(2x))+C

Answered by Liam M. Maths tutor

5693 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the inequality 4x^2​>5x-1


Evaluate the integral of cos(x)sin(x)(1+ sin(x))^3 with respect to x.


Find the stationary points of y= 5x^2 + 2x + 7


The curve y = 4x^2 + a/ x + 5 has a stationary point. Find the value of the positive constant a given that y-ordinate of the stationary point is 32.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences