Integrate ∫x^4+5x^3+sin(2x) dx

∫x^4+5x^3+sin(2x) dx So a basic rule for x functions is that 1. Add 1 to the power 2. divide by the new power. So lets do this for the 2 x terms 1/5x^5+5/4x^4 Now lets look at the sin(2x). A general rule for ∫sin(ax)dx= -1/a(cos(ax)). So now we look at our specific example and we find that ∫sin(2x)dx=-1/2(cos(2x)) So let's put it all together now and remember to add the constant of integration. ∫x^4+5x^3+sin(2x) dx= 1/5x^5+5/4x^4-1/2(cos(2x))+C

LM
Answered by Liam M. Maths tutor

6244 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The volume of liquid in a container is given by v=(3h^2+4)^(3/2)-8, find dV/dh when h = 0.6


The complex numbers Z and W are given by Z=3+3i and W=6-i. Giving your answers in the form of x+yi and showing how you clearly obtain them, find: i) 3Z-4W ii) Z*/W


p(x)=2x^3 + 7x^2 + 2x - 3. (a) Use the factor theorem to prove that x + 3 is a factor of p(x). (b) Simplify the expression (2x^3 + 7x^2 + 2x - 3)/(4x^2-1), x!= +- 0.5


Express 1/(x(1-3x)) in partial fractions.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning