Integrate ∫x^4+5x^3+sin(2x) dx

∫x^4+5x^3+sin(2x) dx So a basic rule for x functions is that 1. Add 1 to the power 2. divide by the new power. So lets do this for the 2 x terms 1/5x^5+5/4x^4 Now lets look at the sin(2x). A general rule for ∫sin(ax)dx= -1/a(cos(ax)). So now we look at our specific example and we find that ∫sin(2x)dx=-1/2(cos(2x)) So let's put it all together now and remember to add the constant of integration. ∫x^4+5x^3+sin(2x) dx= 1/5x^5+5/4x^4-1/2(cos(2x))+C

Answered by Liam M. Maths tutor

5390 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

the graph y = 3/((1-4x)*(1/2)) has a shaded region between x = 0 and x = 2, find area of the region


The curve C has the equation y = 2e^x -6lnx and passes through the point P with x - coordinate 1. a) Find the equation to the tangent to C at P


The equation x^3 - 3*x + 1 = 0 has three real roots; Show that one of the roots lies between −2 and −1


What is the amplitude and period of y=3sin(5x)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences