Integrate ∫x^4+5x^3+sin(2x) dx

∫x^4+5x^3+sin(2x) dx So a basic rule for x functions is that 1. Add 1 to the power 2. divide by the new power. So lets do this for the 2 x terms 1/5x^5+5/4x^4 Now lets look at the sin(2x). A general rule for ∫sin(ax)dx= -1/a(cos(ax)). So now we look at our specific example and we find that ∫sin(2x)dx=-1/2(cos(2x)) So let's put it all together now and remember to add the constant of integration. ∫x^4+5x^3+sin(2x) dx= 1/5x^5+5/4x^4-1/2(cos(2x))+C

LM
Answered by Liam M. Maths tutor

5918 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integral of e^x*sinx


The line y = (a^2)x and the curve y = x(b − x)^2, where 0<a<b , intersect at the origin O and at points P and Q. Find the coordinates of P and Q, where P<Q, and sketch the line and the curve on the same axes. Find the tangent at the point P.


Find the general solution of the differential equation: d^2x/dt^2 + 5dx/dt + 6x = 2cos(t) - sin(t)


a) Differentiate and b) integrate f(x)=xcos(2x) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences