Simplify and solve for x. log(x+1)+log 5=2. Note, log is the natural log in this case

so lets deal with 2 first. We can express 2 in terms of log5 by the laws of logs. nlogx=logx^n. re-writing 2 as 2log5=log25 we now have log(x+1)+log5=log25. lets apply a different log law: log(a)-log(b)=log(a/b). Therefore we get log(x+1)=log(25)-log(5)=log(25/5)=log(5). Now we can cancel the logs to get x+1=5 and now solve algebraically giving x=4

Answered by Liam M. Maths tutor

6429 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx when y = 4x^1/2


Differentiate with respect to x: (4x^2+3x+9)


Find the indefinite integral ∫(x^2)*(e^x) dx (Edexcel C4 June 2013 Question 1)


Express 2Cos(a) - Sin(a) in the form RCos(a+b) Give the exact value of R and the value of b in degrees to 2 d.p.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences