Use Simpson’s Rule with five ordinates to find an approximate value for the integral e^(x^2)dx between the values of 0 and 1

Find the value of dx by dividing the difference between the integral boundaries by the number of ordinates minus 1. Therefore dx=(1-0)/4=1/4. Then define your ordinates, by 5 values between 0 and 1, where the difference between them is 1/4. The ordinates for this example will therefore be 0, 0.25, 0.5, 0.75 and 1. Then use simpson's equation: (dx/3)(f(x0)+4f(x1)+2f(x2)+4f(x3)+f(x4)) by substituting your ordinate values into the original equation e^(x^2). If you typed everything into your calculator correctly, you should yield the answer 1.4637.

JF
Answered by Joshua F. Maths tutor

6893 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the tangent to the line y=(x-2)^2 at the point that it intercepts the y-axis


How do I find the area under a curve between two points?


If y = 1/(x^2) + 4x, find dy/dx


i) Using implicit differentiation find dy/dx for x^2 + y^2 = 4 ii) At what points is the tangent to the curve parallel to the y axis iii) Given the line y=x+c only intersects the circle once find c given that c is positive.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning