Use Simpson’s Rule with five ordinates to find an approximate value for the integral e^(x^2)dx between the values of 0 and 1

Find the value of dx by dividing the difference between the integral boundaries by the number of ordinates minus 1. Therefore dx=(1-0)/4=1/4. Then define your ordinates, by 5 values between 0 and 1, where the difference between them is 1/4. The ordinates for this example will therefore be 0, 0.25, 0.5, 0.75 and 1. Then use simpson's equation: (dx/3)(f(x0)+4f(x1)+2f(x2)+4f(x3)+f(x4)) by substituting your ordinate values into the original equation e^(x^2). If you typed everything into your calculator correctly, you should yield the answer 1.4637.

Answered by Joshua F. Maths tutor

5762 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (tanx)^2


How does integration by parts work ad when to use it?


A particle of mass m moves from rest a time t=0, under the action of a variable force f(t) = A*t*exp(-B*t), where A,B are positive constants. Find the speed of the particle for large t, expressing the answer in terms of m, A, and B.


3 green balls, 4 blue balls are in a bag. A ball is removed and then replaced 10 times. What is the probability that exactly 3 green balls will be removed?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences