Use Simpson’s Rule with five ordinates to find an approximate value for the integral e^(x^2)dx between the values of 0 and 1

Find the value of dx by dividing the difference between the integral boundaries by the number of ordinates minus 1. Therefore dx=(1-0)/4=1/4. Then define your ordinates, by 5 values between 0 and 1, where the difference between them is 1/4. The ordinates for this example will therefore be 0, 0.25, 0.5, 0.75 and 1. Then use simpson's equation: (dx/3)(f(x0)+4f(x1)+2f(x2)+4f(x3)+f(x4)) by substituting your ordinate values into the original equation e^(x^2). If you typed everything into your calculator correctly, you should yield the answer 1.4637.

Answered by Joshua F. Maths tutor

5572 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line AB has equation 3x + 5y = 7, find; a) the gradient of AB b) the x-axis and y-axis intercepts c) sketch the graph


How do I find dy/dx for a given equation, once this is found how do I find the value of x such that dy/dx = 0.


f(x) = (sin(x))^3. What is f'(x)


Given that x = 1/2 is a root of the equation 2x^3 – 9x^2 + kx – 13 = 0, find the value of k and the other roots of the equation.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences