Use Simpson’s Rule with five ordinates to find an approximate value for the integral e^(x^2)dx between the values of 0 and 1

Find the value of dx by dividing the difference between the integral boundaries by the number of ordinates minus 1. Therefore dx=(1-0)/4=1/4. Then define your ordinates, by 5 values between 0 and 1, where the difference between them is 1/4. The ordinates for this example will therefore be 0, 0.25, 0.5, 0.75 and 1. Then use simpson's equation: (dx/3)(f(x0)+4f(x1)+2f(x2)+4f(x3)+f(x4)) by substituting your ordinate values into the original equation e^(x^2). If you typed everything into your calculator correctly, you should yield the answer 1.4637.

JF
Answered by Joshua F. Maths tutor

6891 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is it that the sum of all natural numbers up to n is 1/2(n)(n+1)?


Tom drink drives two days a week, the chance of him being caught per day is 1 in 100. What is the chance he will not be driving after a) one week? b) one year?


What is 'Chain Rule' and why is it useful?


Differentiate e^(xsinx)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning