Find dy/dx of y = a^x

To differentiate a function of the form y=a^x you need to use a neat little trick to rewrite a^x in the form of something you already know how to differentiate. Using the fact that e^ln(x) is equal to x, y = a^x can be written as e^(ln(a)^x) Using log rules ln(a)^x can be written as xlna so now y can now be expressed as y = e^(xlna) This can now be differentiated using the chain rule. Also recall that the differential of e^x is e^x. Using these two ideas: where y=e^(xlna) dy/dx = (lna)e^(xlna) now we can substitute in our initial expression y=a^x therefore dy/dx = (a^x)lna. using this method, you can differentiate any function of the same form. for example where y=2^x we can see that a=2 so dy/dx = 2^xln2

Answered by Tutor33284 D. Maths tutor

22357 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation 2x^2 + xy - y^2 +18 = 0. (1) Find the coordinates of the points where the tangent to the curve is parallel to the x-axis.


How do I calculate the eigenvalues and eigenvectors of a 2x2 matrix, and what is the point of doing this calculation?


A curve has equation 2(x^2)+3x+10. What is the gradient of the curve at x=3


The curve C has the equation y=((x^2+4)(x-3))/2*x where x is not equal to 0 . Find the tangent to the curve C at the point where x=-1 in the form y=mx+c


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences