The Large Hadron Collider (LHC) of circumference 27km uses magnetic fields to accelerate a proton repeatedly in a circular path. Calculate the flux density of a uniform magnetic field required for the proton to travel at a tenth of the speed of light.

Firstly, we must clearly set out the information we have. The particle in question is a proton, which has a mass of 1.67e-27 kg, and a charge of 1.6e-19 C. The path it takes has a circumference of 27000m, meaning the radius of its path is (27000/(2pi)), which is 4297m. The speed it is travelling at is c/10, or 3e7 m/s. The particle takes a circular path, meaning there must be a centripetal force acting on it, and this is given by F = (mv^2)/r. In addition the charged particle is moving through a magnetic field, which means it experiences a force perpendicular to its travel, given by F = Bqv, where B is the magnetic flux density, q is the charge of the particle, and v is the velocity it is travelling at. This is the only force that can provide the centripetal force required for the proton to maintain its path, meaning the above two equations must be equal: (mv^2)/r = Bqv. We want to find the value of B, so rearranging the above equation, we find that: B=(mv)/(rq) =(1.67e-27 * 3e7)/(4297 * 1.6e-19) = 7.29e-5 T

AM
Answered by Aashish M. Physics tutor

7875 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Calculate the flight time of a ball moving in parabolic motion, with initial velocity 5.0m/s at angle 30 degrees from the horizontal travelling for 23 metres.


State what is meant by isotopes?


Explain why an object moving around a circle is said to be accelerating when it has no resultant force acting upon it.


Two pendulums consist of a massless rigid rod of equal length attached to a small sphere of equal radius, with one sphere hollow for one pendulum and the other solid. Each pendulum undergoes damped SHM. Which pendulum has the largest time period?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning