Find the set of values of x for which 3x^2+8x-3<0.

This is a question involving inequalities. An inequality is a statement about real numbers involving one of the symbols >, ≥, ≤, <. In our question we have to find when function f(x)=3x^2+8x-3 is less than 0. The best way to see when f(x) is smaller than 0 is to draw a graph of f(x). We know that f(x) is a quadratic function because it has a form ax^2+bx+c. First, we will find roots of f(x). This can be done by substituting the values into quadratic formula (-b±sqrt(b^2-4ac))/2a. So we'll get (-8±sqrt(8^2-4·3·(-3))), which will give us roots x=1/3 and x=-3. A quadratic equation where the value a is positive has a shape U. So the graph will start from the second quadrant. It will go down through x-axis where x=-3 and then go up through the point x=1/3 and continue going up in the first quadrant. The part of a graph where y values are smaller then 0 is the set of values of x that satisfies the inequality. These values are when x is between -3 and 1/3. However, we have to be careful not to include values x=-3 and x=1/3 because there is a symbol < not ≤. So the final answer is (-3,1/3) (notice we are using round brackets to describe an open interval).

Answered by Huong Giang T. Maths tutor

18523 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve: x^2-7x+6=0


if f(x) = 7x-1 and g(x) = 4/(x-2), solve fg(x) = x


A girl saves money over 200 weeks. She saves 5p in Week 1, 7p in Week 2, 9p in Week 3, and so on until Week 200. Her weekly savings form an arithmetic sequence. Find the amount she saves in Week 200. Calculate total savings over the 200 week period.


Integrate cos^2A


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences