What is the sum of the first 10 terms of the geometric series 32 + 16 + 8 + ... ?

Here we need to use the formula for the sum of a geometric series up to n terms: s = a*(r^n-1)/(r-1). In this formula, 'a' is the first term of the series, 'r' is the common ratio between each consecutive term of the series, and 'n' is the number of terms in the series. We know n = 10, and can see that a = 32. r = 0.5, as each term in the series is half that of the previous term. We input these values into our formula to get: s = 32*(0.5^10-1)/(0.5-1). Inputting this into a calculator, we get the answer s = 63.9 (3 s.f.).

Answered by Eleanor C. Maths tutor

10685 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find values of x in the interval 0<x<360 degrees. For which 5sin^2(x) + 5 sin(x) +4 cos^2(x)=0


Find the tangent to the curve y = x^2 + 3x + 2 that passes through the point (-1,0), sketch the curve and the tangent.


Finding the tangent of an equation using implicit differentiation


How do you find the equation of a tangent to a curve at a certain point, from the equation of the curve?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences