Answers>Maths>IB>Article

Given 1/2 + 1 + 2 + 2^2 + ... + 2^10 = a*2^b + c, find the values of a,b,c.

Consider the Left-Hand-Side (LHS) of the equation first. LHS: 1/2 + 1 + 2 + 2^2 + ... + 2^10. We identify this as a geometric series by noticing that dividing any term u_(n+1) by the preceding term n the result is 2, eg. 1/(1/2) = 2. We also note that there are 12 terms, and that the first term is 1/2. From the formula booklet, section 1.1, we can find an equation for the sum of a finite geometric series: S_n = u_1(1-r^n)/(1-r). Where u_1 is the first term, r is the ratio of successive terms (u_(k+1))/u_k and n is the number of terms. In our case these take the values: u_1 = 1/2 , r = 2 , and n = 12. Substituting these in the equation we have : S_12 = 1/2(1 - 2^12)/(1 - 2) = 1/2(2^12 - 1) = 12^11 - 1/2 We can compare this last result for S_12 with the RHS of the original equation RHS: a2^b + c, to find a = 1, b = 11, and c = -1/2.

Answered by Carlo M. Maths tutor

3727 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Find the derivative of the next function using the implicit method: x^2 sin(x+y)-5 y e^x​​​​​​​=0


The quadratic function f(x) = p + qx – x^2 has a maximum value of 5 when x = 3. Find the value of p and the value of q.


Solve the equation 8^(x-1) = 6^(3x) . Express your answer in terms of ln 2 and ln3 .


In an arithmetic sequence, the first term is 2, and the fourth term is 14. a) Find the common difference, d. b) Calculate the sum of the first 14 terms, S14.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences