Differentiate y = √(1 + 3x²) with respect to x

To solve this question, we need to use the chain rule, because the function is too complicated to solve simply by inspection. The chain rule says that dy/dx = dy/du × du/dx, where u is a function of x. In this example, if we let u = 1 + 3x², then we get y = √(u), which means when we differentiate with respect to u, dy/du = 1/(2√(u)). u = 1 + 3x² which means du/dx = 6x, so dy/dx = 6x/(2√(u)), or 3x/√(1 + 3x²). (This can also be expressed as 3x(1 + 3x²)^-0.5).

Answered by Walter T. Maths tutor

7726 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate, y = 2x^3 + 2/x + 3


Express 21/root7 in the form k root7.


Using the Quotient rule, Find dy/dx given that y = sec(x)


Use the double angle formulae and the identity cos(A+B)≡cos(A)cos(B)−sin(A)sin(B) to obtain an expression for cos 3x in terms of cos x only


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences