Differentiate y = √(1 + 3x²) with respect to x

To solve this question, we need to use the chain rule, because the function is too complicated to solve simply by inspection. The chain rule says that dy/dx = dy/du × du/dx, where u is a function of x. In this example, if we let u = 1 + 3x², then we get y = √(u), which means when we differentiate with respect to u, dy/du = 1/(2√(u)). u = 1 + 3x² which means du/dx = 6x, so dy/dx = 6x/(2√(u)), or 3x/√(1 + 3x²). (This can also be expressed as 3x(1 + 3x²)^-0.5).

Answered by Walter T. Maths tutor

7827 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Maths C1 2017 1. Find INT{2x^(5) + 1/4x^(3) -5}


A curve is defined by the parametric equations x = 3^(-t) + 1, y = 2 x 2^(t). Show that dy\dx = -2 x 3^(2t).


a) show that (cosx)^2=8(sinx)^2-6sinx can be written as (3sinx-1)^2=2 b)Solve (cosx)^2=8(sinx)^2-6sinx


Integrate sin^4(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences