Differentiate y = √(1 + 3x²) with respect to x

To solve this question, we need to use the chain rule, because the function is too complicated to solve simply by inspection. The chain rule says that dy/dx = dy/du × du/dx, where u is a function of x. In this example, if we let u = 1 + 3x², then we get y = √(u), which means when we differentiate with respect to u, dy/du = 1/(2√(u)). u = 1 + 3x² which means du/dx = 6x, so dy/dx = 6x/(2√(u)), or 3x/√(1 + 3x²). (This can also be expressed as 3x(1 + 3x²)^-0.5).

WT
Answered by Walter T. Maths tutor

8220 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the binomial expansion of (2x+6)^5 up to x^3 where x is decreasing.


Solve the simultaneous equations y + 4x + 1 = 0 and y^2 + 5x^2 + 2x = 0


Find the stationary points of the function y = (1/3)x^3 + (1/2)x^2 - 6x + 15


Differentiate x^3⋅cos(5⋅x) with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning