Find the equation of the straight line that passes through the points (1,2) and (2,4)

Remember that the equation of a straight line (when given two points OR a point and a gradient) is y-y_1 = m(x-x_1) where m is the gradient and (x_1,y_1) is a point on the line.

Since we have two points, we must find the gradient between them. We can do this using m=(y_1-y_2)/(x_1-x_2). From the two points in the question, we get m=(2-4)/(1-2). This gives m=2.

Now we can use this gradient with either point from the question to give the equation of our line.

So, y-2=2(x-1) and we can rearrange this to get y=2x.

Answered by Murray M. Maths tutor

8310 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are the first 4 non-zero terms in the binomial expansion of (2+3x)^6


A curve has the equation y=3x^3 - 7x^2+52. Find the area under the curve between x=2 and the y-axis.


Find the integral of (x+4)/x(2-x) .dx


f (x) = (x^2 + 4)(x^2 + 8x + 25). Find the roots of f (x) = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences