Integrate the following equation to find y: dy/dx = 3x^2 + 2x + 6

Notice that integration is simply the opposite of differentiation. So, if we just integrate this term-by-term then we can find an expression of y in terms of x.

So, when we integrate dy/dx becomes y.

Integrating 3x^2, we add 1 to the power and divide the coefficient by this new power. So we will get 3x^3/3 which is the same as x^3.

Then, by the same process, integrating 2x will give 2x^2/2 which is equal to x^2.

Now, if we think of 6 as the same as 6x^0 (since anything ^0 equals 1) then by the same process we get 6x^1/1 which is just 6x.

Finally, we must remember that we cannot find any term which are just a constant as they would have disappeared when y was differentiated, so we must add a +c to the end.

Bringing this all together, we get y=x^3+x^2+6x+c

Answered by Murray M. Maths tutor

11020 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can you express the complex number z = 2 + 3i in the form z = r(cos x + i sinx)


Find the tangent to the curve y=x^2 +2x at point (1,3)


How do you differentiate parametric equations?


Points P and Q are situated at coordinates (5,2) and (-7,8) respectively. Find a) The coordinates of the midpoint M of the line PQ [2 marks] b) The equation of the normal of the line PQ passing through the midpoint M [3 marks]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences