Integrate the following equation to find y: dy/dx = 3x^2 + 2x + 6

Notice that integration is simply the opposite of differentiation. So, if we just integrate this term-by-term then we can find an expression of y in terms of x.

So, when we integrate dy/dx becomes y.

Integrating 3x^2, we add 1 to the power and divide the coefficient by this new power. So we will get 3x^3/3 which is the same as x^3.

Then, by the same process, integrating 2x will give 2x^2/2 which is equal to x^2.

Now, if we think of 6 as the same as 6x^0 (since anything ^0 equals 1) then by the same process we get 6x^1/1 which is just 6x.

Finally, we must remember that we cannot find any term which are just a constant as they would have disappeared when y was differentiated, so we must add a +c to the end.

Bringing this all together, we get y=x^3+x^2+6x+c

Answered by Murray M. Maths tutor

10677 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you differentiate the term 3x^3-2x^2+x-10


For a graph C with equation y=3/(5-3x)^2, find the the equation of the line normal to the graph at point P, where x=2. Give your answer in the form ax+by+c=0


find the integral of f'(x)=2x+5


Find the perpendicular bisector passing through the stationary point of the curve y=x^2+2x-7.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences