y = (x^3)/3 - 4x^2 + 12x find the stationary points of the curve and determine their nature.

first we find the first derivative of the function. Here dy/dx = x^2-8x+12. We set this to zero and factorise to obtain the roots of the function. Such that dy/dx = (x-6)(x-2)= 0. This gives the stationary points as x=6 and x=2. By substituting our x values into our function we can obtain the coordinates of the points. These are (6,0) and (2,32/3) To determine the nature of these points we take the second derivative of the function. d^2y/dx^2= 2x-8. By substituting our values of x into the second derivative we obtain d^2y/dx^2= 4 for x=6 and d^2y/dx^2= -4 for x=2. If the second derivative is larger than zero the point is a minima, if smaller than zero the point is a maxima. Thus (6,0) is a mimima and (2,32/3) is a maxima.

JM
Answered by Jordan M. Maths tutor

4076 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate ln(x) with respect to x?


Differentiate x^x


How was the quadratic formula obtained.


Differentiate 4(x^3) + 3x + 2 with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences