Can you express 3 + 4j in polar form?

First, let's imagine the point 3 + 4j as a point on an Argand diagram, with coordinates 3,4. The polar form of an imaginary number is in the form re^(jθ), where r is the modulus of the number (the distance between the point on the graph and the origin), and θ is the argument (the angle the point makes with the horizontal). In order to find r, we can simply use Pythagoras' Theorem, giving us the answer r = 5. To find θ, we must use trigonometry, identifying the angle θ as the inverse tangent of (4/3), which is equal to 0.927. Therefore the angle θ is 0.927. This means the polar form of 3 + 4j is 5e^0.927jθ

Related Further Mathematics A Level answers

All answers ▸

For a homogeneous second order differential equation, why does a complex conjugate pair solution (m+in and m-in) to the auxiliary equation result in the complementary function y(x)=e^(mx)(Acos(nx)+Bisin(nx)), where i represents √(-1).


How can you find the two other roots of a cubic polynomial if you're given one of the roots (which is a complex number)?


Find the stationary points of the function z = 3x(x+y)3 - x3 + 24x


How do I construct a proof by induction?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences