Can you express 3 + 4j in polar form?

First, let's imagine the point 3 + 4j as a point on an Argand diagram, with coordinates 3,4. The polar form of an imaginary number is in the form re^(jθ), where r is the modulus of the number (the distance between the point on the graph and the origin), and θ is the argument (the angle the point makes with the horizontal). In order to find r, we can simply use Pythagoras' Theorem, giving us the answer r = 5. To find θ, we must use trigonometry, identifying the angle θ as the inverse tangent of (4/3), which is equal to 0.927. Therefore the angle θ is 0.927. This means the polar form of 3 + 4j is 5e^0.927jθ

Related Further Mathematics A Level answers

All answers ▸

Find the eigenvalues and eigenvectors of A = ([2, 0 , 0], [0, 1, 1], [0, 3, 3])


Prove that ∑(1/(r^2 -1)) from r=2 to r=n is equal to (3n^2-n-2)/(4n(n+1)) for all natural numbers n>=2.


A particle is undergoing circular motion in a horizontal circle, that lies within the smooth surface of a hemispherical bowl of radius 4r. Find the distance OC (explained in diagram) if the angular acceleration of the particle is equal to root (3g/8r).


What is the complex conjugate?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences