Answers>Maths>IB>Article

Differentiate x^3 + y^4 = 34 using implicit differentiation

An implicity function is one that is not expressed in the form y = f(x) such as the equation in the question. Instead of rearranging the equation to make y the subject, the equation can be differentiated using a technique called implicity differentiation. This involves differentiating each term on both sides of the equation. Differentiating x^3 will give 3x^2 and differentiating 34 will give 0. However differentiating y^4 will give (4y^3) X (dy/dx). This is achieved by using the chaing rule whereby d(y^4)/dx = (d(y^4)/dy) X (dy/dx).

Answered by Olavo M. Maths tutor

2102 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

The points {3,3,0}, {0,6,3} and {6,6,7} all lie on the same plane. Find the Cartesian equation of the plane.


The sum of the first and third term of a geometric sequence is 72. The sum to infinity of this sequence is 360, find the possible values of the common ratio, r.


Prove by mathematical induction that (2C2)+(3C2)+(4C2)+...+(n-1C2) = (nC3).


Find the coordinates that correspond to the maximum point of the following equation: y = −16x^2 + 160x - 256


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences