Solve for simultaneous equations x +5y =9 and 3x + 2y =5.

Here we have 2 unknown variables, x and y. First number the two equations, so x + 5y = 9 is (1), while 3x + 2y = 5 (2).

Rearrange both equations so that they become (1) x = 9-5y and (2) x= (5-2y)/3.

Next, since x is has only one value, we could equate the two equations together to find out what y is.

So, to find y, equation (1) = equation (2). 9-5y=(5-2y)//3.

Multiple the equation by 3 to remove fractions. 27-15y=5-2y.

Then separate the numerals so that y would be on the left and numbers on the right.
15y-2y=27-5

Then solve first by subtraction, 13y = 22,

Divide the equation by 13. y = 22/13, which is the final answer.

Now, substitute the value of y into either equations, e.g. eqn. (1) x=9-5(22/13) And you get your value of x, which is 7/13.

Remember the rule for solving mathematics is always in the order of BODMAS: brackets, orders, division, multiplication, addition and subtraction.

Answered by Abigail L. Maths tutor

6433 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the equation of the straight line which passes through the points (3,1) and (-1,3)?


How do you complete the square to answer quadratic equations?


The length of a rectangle is five times the width. The area of the rectangle is 1620 cm(squared) Work out the width of the rectangle.


Factorise x^2 -7x+10, and hence solve x^2-7x+10=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences