Solve for simultaneous equations x +5y =9 and 3x + 2y =5.

Here we have 2 unknown variables, x and y. First number the two equations, so x + 5y = 9 is (1), while 3x + 2y = 5 (2).

Rearrange both equations so that they become (1) x = 9-5y and (2) x= (5-2y)/3.

Next, since x is has only one value, we could equate the two equations together to find out what y is.

So, to find y, equation (1) = equation (2). 9-5y=(5-2y)//3.

Multiple the equation by 3 to remove fractions. 27-15y=5-2y.

Then separate the numerals so that y would be on the left and numbers on the right.
15y-2y=27-5

Then solve first by subtraction, 13y = 22,

Divide the equation by 13. y = 22/13, which is the final answer.

Now, substitute the value of y into either equations, e.g. eqn. (1) x=9-5(22/13) And you get your value of x, which is 7/13.

Remember the rule for solving mathematics is always in the order of BODMAS: brackets, orders, division, multiplication, addition and subtraction.

Answered by Abigail L. Maths tutor

6365 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find values for x and y from two simultaneous equations: 2x + y = 5 and 3x + y = 7


There is a spinner game at a fair. The spinner is numbered with all even numbers from 2 to 12. Each section is equal in size. Dan has numbers 4 and 10. What is the probability that he wins a prize? Give your answer as a fraction in its simplest form.


Solve the simultaneous equations 2x - 3y = 24 (1) ; 6x + 2y = -5 (2)


Simplify fully: (24 - √ 300)/(4√ 3 - 5). Give your answer in the form a√ b where a and b are integers and find the values of a and b.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences