There is a train A. On the roof of A is another frictionless train B of mass Mb. A mass Mc hangs off the front of A and is attached to the front of B by rope and frictionless pulley. How fast should A accelerate so that B wont fall off the roof of A.

You must carefully draw a diagram. The key to this question is to find from what perspective you should view it. The easiest way is to see that B wants to accelerate due to the weight of C. This is unaffected by the motion of A. We simply need to accelerate A at the same rate that B would accelerate so there will be no relative motion and so B wont fall off. We have the acceleration of b = (Mc*g)/(Mb+Mc) So that is what the acceleration of A should be.

Answered by Sean O. Physics tutor

1790 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Suggest which particles will be emitted as K-40 decays to Ca-39:


Why is the refractive index of water bigger than that of air?


What does the photoelectric effect demonstrate?


A small ball is projected with speed 15 m/s at an angle of 60 degrees above the horizontal. Find the distance from the point of projection of the ball at the instant when it is travelling horizontally.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences