Find the integral of xcosx(dx)

Firstly, let's split the equation "xcosx" into two parts to integrate them separately. 1) Let u=x and dv/dx=cosx 2)As the integral of x is 1, du/dx=1 3)To find v, we integrate cosx to get v=sinx Using the formula: The integral of x.dv/dx=uv-integral of v.du/dx So, to reiterate we have: u=x du/dx=1 v=cosx dv/dx=sinx So, using the formula, we need to find uv and the integral of v.du/dx 1) uv=x.sinx=xsinx 2) v.du/dx=sinx.1=sinx By using the formula as listed above: 1) xsinx-integral(sinx)= xsinx-(-cosx)+c= xsinx+cosx+c Therefore, the answer is xsinx+cosx+c

AF
Answered by Amelia F. Maths tutor

16574 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the equation y = (1+x^2)^3 with respect to (w.r.t.) x using the chain rule. (Find dy/dx)


Find the gradient of the tangent and the normal to the curve f(x)= 4x^3 - 7x - 10 at the point (2, 8)


Does the equation x^2 + 2x + 5 = 0 have any real roots?


Find the inverse of a 2x2 matrix


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning