Find the integral of xcosx(dx)

Firstly, let's split the equation "xcosx" into two parts to integrate them separately. 1) Let u=x and dv/dx=cosx 2)As the integral of x is 1, du/dx=1 3)To find v, we integrate cosx to get v=sinx Using the formula: The integral of x.dv/dx=uv-integral of v.du/dx So, to reiterate we have: u=x du/dx=1 v=cosx dv/dx=sinx So, using the formula, we need to find uv and the integral of v.du/dx 1) uv=x.sinx=xsinx 2) v.du/dx=sinx.1=sinx By using the formula as listed above: 1) xsinx-integral(sinx)= xsinx-(-cosx)+c= xsinx+cosx+c Therefore, the answer is xsinx+cosx+c

Answered by Amelia F. Maths tutor

15811 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why do I need to add the + C when finding an indefinite integral?


Integrate 4x^3 + 6x^2 +4x + 3


How many solutions are there of the equation a+b+c=12, where a,b,c are non-negative integers?


Integrate 3t^2 + 7t with respect to t, between 1 and three.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences