The equation (t – 1)x^2 + 4x + (t – 5) = 0, where t is a constant has no real roots. Show that t satisfies t2–6t+1>0

This is a quadratic equation of the form ax^2 + bx +c, where (t-1)=a 4=b . (t-5)=0 Therefore if there are no real roots, you get that b^2-4ac<0. (using the quadratic formula)

First plug in values for a b and c: 4^2-4(t-1)(t-5)<0 Secondly rearrange the equation: 16<4(t-1)(t-5)

Then simplify (divide by 4): 4<(t-1)(t-5)

Then expand the brackets: 4<t^2-5t-t+5

Finally rearrange for final result: t^2-6t+1<0

Answered by Rachel Y. Maths tutor

3162 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (x^2+4x+13)/((x+2)^2)(x-1) dx by using partial fractions


Given y=x^2(1+4x)^0.5, show that dy/dx=2x(5x+1)/((1+4x)^0.5)


solve for x, in the form x = loga/logb for 2^(4x - 1) = 3^(5-2x) (taken from OCR June 2014 C2)


Find the area contained under the curve y =3x^2 - x^3 between 0 and 3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences