The equation (t – 1)x^2 + 4x + (t – 5) = 0, where t is a constant has no real roots. Show that t satisfies t2–6t+1>0

This is a quadratic equation of the form ax^2 + bx +c, where (t-1)=a 4=b . (t-5)=0 Therefore if there are no real roots, you get that b^2-4ac<0. (using the quadratic formula)

First plug in values for a b and c: 4^2-4(t-1)(t-5)<0 Secondly rearrange the equation: 16<4(t-1)(t-5)

Then simplify (divide by 4): 4<(t-1)(t-5)

Then expand the brackets: 4<t^2-5t-t+5

Finally rearrange for final result: t^2-6t+1<0

Answered by Rachel Y. Maths tutor

2889 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If f(x) = x^2 - 3x + 2, find f'(x) and f''(x)


y = 6x^2 + 8x + 2. Find dy/dx


The height x metres, of a column of water in a fountain display satisfies the differential equation dx/dt = 8sin(2t)/(3sqrt(x)), where t is the time in seconds after the display begins. (a) Solve the differential equation, given that x(0)=0


What is the chain rule? when do I have to use it?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences