The line AB has equation 3x + 5y = 7. Find the gradient of line AB.

First, let's make y the subject of the equation.

Let's achieve this by having only y on the left hand side of the equation. To do this we need to minus 3x from both sides of the equation. This leaves us with: 5y = 7 - 3x. Now we must divide both sides by 5. This leaves us with y = 1.4 - 3/5x.

We know that the gradient of a straight line can be found by looking at the number in front of the x. (y = mx + c) In this case, that number, or the gradient, is -3/5.

Answered by Tom O. Maths tutor

4914 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given the equation 0=5x^2+3xy-y^3 find the value of dy/dx at the point (-2,2)


2^-8 = ?


A curve passes through the point (4, 8) and satisfies the differential equation dy/dx = 1/ (2x + rootx) , Use a step-by-step method with a step length of 0.3 to estimate the value of y at x = 4.6 . Give your answer to four decimal places.


Identify the stationary points of f(x)=3x^3+2x^2+4 (by finding the first and second derivative) and determine their nature.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences