Solve the simultaneous equations: y=2x+2, y=x^2 - 1

The solution to this question can be obtained algebraically using substitution. As both equations are equal to y, this also means they are equal to each other. So firstly, substitute the simpler equation which is y=2x+2 into the second equation giving 2x+2 = x^2 - 1. Re-arrangement of this gives x^2 - 2x + 3 = 0. Using quadratic equation theory, this then becomes (x - 3)(x + 1)=0. Any equation that equals zero must have another zero value on the other side of the equation. Therefore when y is 0, x is either 3 or -1. Using these two x values, we can work out the y values from the original equations. Using the simpler equation y=2x + 2, if x is 3 then y=2*3 + 2= 6+2 = 8 and if x is -1, y=2(times-1) + 2 = -2+2=0. Just to check these values are correct, you can then plug them in to the second equation and the same x and y values should be obtained

Answered by Sahil N. Maths tutor

12107 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Jay, Shelia & Harry share £7200 in the ratio 1:2:5. How much does Harry receive?


Solve 7x=4(x-8)


What is the value of 64^(2/3)?


There are 30 yellow sweets and 10 black sweets in a bag. Two sweets are taken out at random without replacement. Work out the probability that the two sweets are the same colour.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences