Find the first differential with respect to x of y=tan(x)

To answer, we must be familiar with several trigonometric identities and expressions; first notice that tan(x)=sin(x)/cos(x). Now our function is a quotient of two functions of x that we can easily differentiate. Using the quotient rule gives dy/dx=[cos(x)cos(x)-sin(x)(-sin(x))]/cos^2(x). The numerator simplifies into cos^2(x)+sin^2(x), which our trigonometric identities tell us is just equal to 1. Hence we have dy/dx=1/cos^2(x), and as sec(x)=1/cos(x), we can express this as dy/dx=sec^2(x).

Answered by Alex J. Maths tutor

6970 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y=rootx + 4/rootx = 4, find the value of dy/dx when x=8, writing your answer in the form aroot2, where a is a rational number.


How can you integrate the function (5x - 1)/(x^(3)-x)?


Given that log3 (c ) = m and log27 (d )= n , express c /(d^1/2) in the form 3^y, where y is an expression in terms of m and n.


The line AB has equation 5x + 3y + 3 = 0 and it intersects the line with equation 3x - 2y + 17 = 0 at the point B. Find the coordinates of B.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences